A search and rescue robot with tele-operated tether docking system
نویسندگان
چکیده
Purpose – To describe a robot designed and built to operate in outdoor environments hostile to the human presence, such as debris resulting from the collapse of built structures, and targeted to the tele-operated detection of potential survivors using a set of specific sensors whose information is transmitted to a remote human operator. Design/methodology/approach – RAPOSA’s mechanical structure is composed of a main body and a front body, whose locomotion is supported on tracked wheels, allowing motion even when the robot is upside down. The front body has variable tilting capabilities, providing means to overcome edges higher than the robot main body (e.g. when climbing a stair) and is also useful to grab the lower ground when only the main body has ground contact. This front body has one thermal camera and two webcameras installed. Additional sensors include gas, temperature and humidity sensors, web cams, light diodes, microphone and loudspeaker. The robot uses wireless communications, with an option for tethered operation. Findings – The robot was tested in several scenarios of the Fire Fighters school. In this particular exercise, the robot reduced the inspection time down to 25 percent of the time that specialized firefighters teams would take to finish the exercise. This was due to the fact that the firefighters need to stabilize the environment in order to reduce live threats. In this case, as in many other similar situations, not only the robot provides a faster inspection method, but also a much safer one. Originality/value – The tether carries both power and communications, with an access point on its end. Docking and undocking the robot to the tether is accomplished remotely by the operator with the help of a camera located inside the robot, and represents the most innovative feature of RAPOSA.
منابع مشابه
مدلسازی دینامیکی و کنترل ربات فضایی متصل به تتر
In present study, dynamic modeling and control of a tethered space robot system in trajectory tracking of its end effector is investigated. Considering variation of the tether length in the model, dynamics of the system is modeled using Lagrange’s method. Librational motion of the tether is controlled by adjusting the tether length similar to conventional manipulators,control of the robot...
متن کاملVirtual Synergy: A Human-Robot Interface for Urban Search and Rescue
This paper describes the Virtual Synergy interface, which combines a three dimensional graphical interface with physical robots to allow for collaboration among multiple human researchers, simulated software agents and physical teams of multi-terrain robots for the task of Urban Search and Rescue (USAR) [8,9]. Using the interface to communicate and monitor the robots gives the human operators t...
متن کاملEntanglement detection of a swarm of tethered robots in search and rescue applications
In urban search and rescue (USAR) applications, robots play a pivotal role. As USAR is time sensitive, swarm of robots is preferred over single robot for victim search. Tethered robots are widely used in USAR applications because tether provides robust data communication and power supply. The problem with using tethers in a collapsed, unstructured environment is tether entanglement. Entanglemen...
متن کاملAutonomous docking of a tracked wheels robot to its tether cable using a vision-based algorithm
Search and Rescue (SAR) Robotics has been gaining an increasing interest in recent years. In spite of that, there are still many challenges to be addressed in terms of autonomy level. RAPOSA is a semi-autonomous, tracked wheels robot, designed for SAR operations. This paper presents an autonomous docking algorithm. The docking is performed to a docking station that provides both power and a wir...
متن کاملThree-Dimensional Thermography Mapping for Mobile Rescue Robots
In urban search and rescue situations, a 3D map obtained using a 3D range sensor mounted on a rescue robot is very useful in determining a rescue crew’s strategy. Furthermore, thermal images captured by an infrared camera enable rescue workers to effectively locate victims. The objective of this study is to develop a 3D thermography mapping system using a 3D map and thermal images; this system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Industrial Robot
دوره 34 شماره
صفحات -
تاریخ انتشار 2007